110 research outputs found

    Damping rate of neutrinos in the singlet Majoron model

    Get PDF
    The damping rate and free path of neutrinos in the singlet Majoron model have been calculated including both finite temperature and symmetry breaking effects. The behaviour of right- and left-handed fermions are found inherently different. While the damping rates of the left-handed leptons are essentially model independent, e.g. directly applicable to the Standard Model, for the right-handed particles the rates are crucially sensitive to parameters of the scalar sector. In general, the damping rates are fairly large. The possibility of the right-handed neutrinos to penetrate deep into the broken phase in the electroweak phase transition still remains, however, for some parts of parameter space.Comment: 23 pages, latex, 6 figures as uuencoded postscript fil

    Crowdsourcing Cultural Heritage : Public Participation and Conflict Legacy in Finland

    Get PDF
    Following a recent worldwide boom in the democratization of knowledge, crowdsourcing and Participatory GIS, heritage practice increasingly draws on crowdsourced geographical data. In this paper, I discuss a public crowdsourcing of twentieth century conflict heritage in Finland, launched by state-owned broadcasting company Yleisradio. Here emphasis is on analysing the user behaviour and incentives, which can inform analogous future initiatives. Many of the public entries mirror local perspectives on conflict heritage: pride of personally important loci and self-satisfaction appear to be important incentives for taking part. Finally, I summarize themes that other heritage crowdsourcing organizers could apply to their work.Peer reviewe

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Alpha decay spectroscopy of neutron-deficient astatine, radon and francium nuclei using a gas-filled separator

    No full text
    Alpha particle decay properties (alpha particle energy and half-life) of neutron-deficient astatine, radon and francium isotopes are studied in this thesis. These nuclei in the close vicinity of the proton drip-line were produced using three different heavy-ion-induced fusion-evaporation reactions. The reactions were 141Pr(56Fe, xn)197-xAt, 169Tm(35Cl, xn)204-xRn, 170Yb(35Cl, xn)205-xFr and the beam particles were delivered by the K = 130 MeV heavy ion cyclotron of the Accelerator Laboratory of the Department of Physics, University of Jyvaskylii. The gas-filled recoil separator RITU was used to separate reaction products from the primary beam. The method of time and position correlated alpha particle decay chains were used for analysing the experimental data. Nine previously unpublished alpha particle transition from five different isotopes (193,194,195At, 197Rn and 200Fr) were observed in the present work. Measured alpha particle energies and half-lives are compared with the systematics of heavier isotopes and with theoretical predictions. The systematics of isomerism and shell model intruder states are also shown
    corecore